A MULTILEVEL APPROACH TO SHIP CLASSFICATION ON SENTINEL-1 SAR IMAGES USING ARTIFICIAL NEURAL NETWORKS A. Makedonas^a, C. Theoharatos^{a,*}, V. Tsagaris^a, S. Costicoglou^b

^a Computer Vision Systems, IRIDA Labs S.A., Patras Innovation Hub, Kato-Ano Kastritsiou 4, Magoula 26504, Patras, Greece – (anmack,htheohar,tsagaris)@iridalabs.gr ^b Space Hellas S.A., 312 Messogion Ave., 15341 Athens, Greece – scostic@space.gr

ABSTRACT

A multilevel approach to ship classification in Sentinel-1 SAR images is presented based on artificial neural nets and a robust feature extraction and selection scheme that utilizes scale, shape and texture features hierarchically. A three-stage hierarchical feature selection algorithm is used for discriminating civilian vessels into four types: cargos, passengers, tankers and small ships. The most informative texture and intensity features are incorporated in order to better distinguish vessels with high accuracy. The proposed method overall accuracy reaches 89%.

GENERAL METHODOLOGY

EXPERIMENTAL RESULTS

- Sentinel-1 SAR data at the region of the Xios Island, Aegean Sea, Greece Dual-pol, 10x10m, from ESA's data scihub.
- AIS data were also used in order to classify the detected ships.
- Four main categories were used for the evaluation of the methodology

• Scene ortho-rectification

- Speckle filtering
- Land masking
- Optimal parametric CFAR for Weibull clutter
- Scale and shape features (e.g. area, diameter, extent major axis, perimeter, solidity, etc.)
- Textural features (GLCM and GLRLM over the detected ship's bounding box)
- Hierarchical feature selection

• Using a three-stage neural network classifier

HIERARCHICAL FEATURE SELECTION

Extracted features

• 32 scale, shape and textural features were initially extracted.

Vessel Types	NN training	Evaluation	
Cargo	512	122	
Passeneger	107	27	
Tanker	316	50	
Small ships	43	72	
TOTAL	978	271	

Confusion Matrix							
1	114 42.1%	1 0.4%	7 2.6%	0 0.0%	93.4% 6.6%		
utput Class	7 2.6%	17 6.3%	2 0.7%	1 0.4%	63.0% 37.0%		
	10 3.7%	0 0.0%	40 14.8%	0 0.0%	80.0% 20.0%		
0 4	0 0.0%	1 0.4%	0 0.0%	71 26.2%	98.6% 1.4%		
	87.0% 13.0%	89.5% 10.5%	81.6% 18.4%	98.6% 1.4%	89.3% 10.7%		
	1	2	3	4			
Target Class							

CONCLUSIONS

1st stage discrimination: small ships

- Overall classification accuracy for the first stage is 99.30%.
- 2nd stage discrimination: cargo ships
- Six features are selected (equivalent diameter, extent, gamma value, solidity, run-length, non-uniformity).
- 3rd stage discrimination: tanker and passenger ships
- Seven features are selected (extent, gamma value, major axis, perimeter, size, ratio, correlation).

- Filter-based feature selection
- **Stability** (normalized variance coefficient)
- **Discriminability** (inter-intra class distance ratio)
- Features that present high stability and discriminability scores are checked.
- The created feature sets are applied to a training classifier directly.
- K-NN classifier is used for the calculation of the maximum precision.
- Feature set with the maximum precision.

HIERARCHICAL-BASED VESSEL CLASSIFICATION

- Different types of feature extraction algorithms are implemented to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics.
- A three-stage hierarchical feature selection is utilized o discriminate effectively vessels into four types: cargos, passengers, small ships and tankers.
- A feature selection process that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out.
- A total of 271 ships were used in the classification process, while AIS data were applied to verify the effectiveness of the algorithm.
- Experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 89%.

References

A. Makedonas, C. Theoharatos, V. Tsagaris, V. Anastasopoulos and S. Costicoglou, "Vessel classification in Cosmo-SkyMed SAR data using hierarchical feature selection", in 36th Int. Symposium on Remote Sensing of Environment (ISRSE36), 11-15 May 2015, Berlin, Germany.

Chen, W.-T., Ji, K.-F, Xing, X.-W., Zou, H.-X., 2012. Ship recognition in high resolution SAR images based on feature selection. In: International Conference on Computer Vision in Remote Sensing (CVRS12), pp. 301-305.

Haralick, R. M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), pp. 610-621.

Jiang, S., Wu, F., Wang, C., Zhang, B., 2012. Civilian Vessel Classification with COSMO-SkyMed Images Based on Feature Analysis. In: 2012 International Conference on Computer Vision in Remote Sensing (CVRS), 16-18 Dec. 2012, pp. 279-284.

Acknowledgements

This work was supported in part by the Hellenic General Secretariat for Research and Technology (GSRT), in the frame of project "ACRITAS", si-cluster.

